

FARO

Forum of Arctic Research Operators

Promoting dialogue on logistics and operational support for scientific research in the Arctic

Open and informal network of operators of ships, stations and aircraft

Small and big – national and local

faro-arctic.org
Chair MagnusTannerfeldt, magnus@polar.se

FARO

20 Member countries – ca 40 operators, funding agencies, institutes

Austria Austrian Polar Research Institute

Canada Dalhousie University

China Polar Research Institute of China - PRIC

Czech Republic University of South Bohemia

Denmark Aarhus University

Finland Finnish Environment Institute - FMI

France IInstitut polaire français Paul Émile Victor - IPEV

Germany Alfred Wegener Institute - AWI

Iceland The Icelandic Centre for Research – RANNÍS

Italy National Research Council - NRC

Japan National Institute of Polar Research - NIPR

Korea Polar Research Institute - KOPRI

Netherlands University of Groningen

Norway Norwegian Polar Institute - NPI

Poland Polish Academy of Sciences

Portugal Portuguese Foundation for Sci & Tech

Russia Arctic and Antarctic Research Institute - AARI Sweden Swedish Polar Research Secretariat - SPRS

UK National Environmental Research Council - NERC

USA National Science Foundation - NSF

How can FARO help?

- FARO works with a pan-Arctic perspective to promote synergies and optimized use of research infrastructures across national borders
- FARO offers its network and expertise to facilitate implementation of transnational planning
- FARO can help integrate scientific priorities with strategic, long-term planning of infrastructures and capacities
- FARO can make inventories of existing infrastructures to identify gaps to be addressed on the pan-Arctic scale, including better connection of existing capacities
- FARO is a link to know-how and development of equipment and infrastructure

Points to consider

- It takes time to build collaborations. And to build up trust.
- Joint programming should be truly coordinated with RI's operation, development and funding.
- Decision making sometimes has to be made on a higher level than individual infrastructures. We have to agree to cooperate – and thus to pool resources.
- Infrastructure has an important function to coordinate and enhance collaboration between research groups.
- An infrastructure is something that can only be achieved by dedicating resources, it's much more than just cooperation and synchronization of existing programmes.

Operational aspects

Investments and priorities for ships, stations, aircraft, equipment

- 1. Decide what to invest in and where to put it, guided by
 - science plans from ICARP, AOS, IASC, ISAC, etc.
 - analyses of gaps and needs
- 2. Dedicate resources
 - collaborations between operators to offer resources
 - international money to get things going
 - research funding mechanisms with **pooled resources**
- 3. Optimal use, fill the infrastructures with the best science
 - create one-stop-shops
 - enable and promote international access
 - maintain **flexibility**, upgrade and renew investments

Suggested focus for the Arctic Council Task force on Scientific cooperation (TFSC)

WHAT?

Research access and transport of samples
Cross-border equipment transport, access for personnel, customs practices, sample and data exchange, research clearances and scientific permitting

WHY?

- An issue that needs solutions also on the political level
- An issue for the Arctic countries to solve
- Feasible: reasonable time frame, low cost
- Highly prioritized by scientists and managers
 - Crucial for the relevance of scientific collaboration and sampling

Suggested focus for TFSC

WHAT?

Research access and transport of samples

Cross-border equipment transport, access for personnel, customs practices, sample and data exchange, research clearances and scientific permitting

HOW?

- Harmonized regulations with one-stop-shop approach
- Customs clearance connected to permits for sampling and research: temporary import of equipment, and export of samples
- Build on existing institutions, networks and regulations

Joint use of research infrastructures – meeting our needs for Arctic ocean observation and marine research

ARICEArctic Research Icebreaker Consortium for Europe

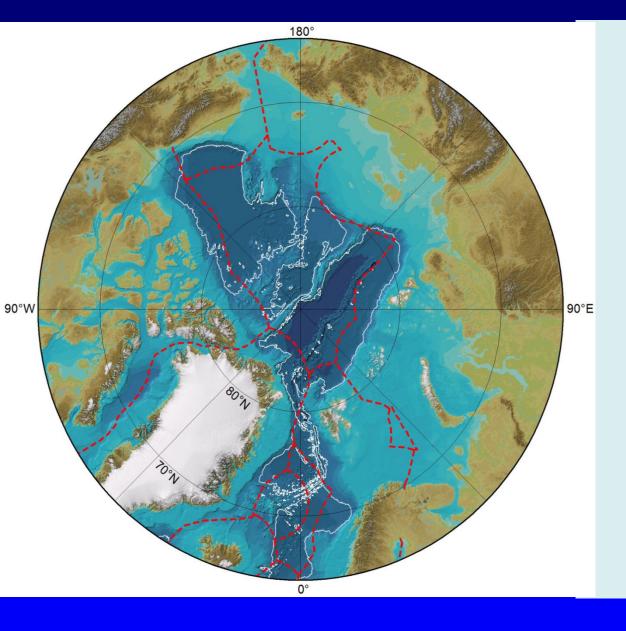
Magnus Tannerfeldt, SPRS magnust@polar.se

Nicole Biebow, AWI nicole.biebow@awi.de

Marine Research Infastructures

The resources:

POLARSTERN – one of the most sophisticated polar research vessels in the world


ODEN – the most capable research icebreaker in the world (non-nuclear)

The idea:

Scientific, political and financial commitment to create a European and international network for joint research icebreaker operations using existing ships.

The objectives:

- Increase the coordination of available European heavy icebreakers
- Cost-effective usage through transnational harmonisation, especially in the High Arctic

Access to the High **Arctic** through **ARICE**

The reasons for establishing a strategic initiative at this point in time are:

- Urgent requirement to capture new data and fill gaps in scientific understanding about rapid change in the Arctic Ocean
- Science operations in the High Arctic, especially in the colder season, are costly and logistically demanding
- ➤ Plan emerges to build a new German polar research vessel POLARSTERN 2, whilst continuing to operate POLARSTERN
- Swedish polar research icebreaker ODEN operates under renewed 10-year agreement that makes the ship available for research May to December each year

The ARICE initiative

Key European Partners:

- 1. Alfred Wegener Institut für Polar- und Meeresforschung (AWI), Germany, Nicole Biebow
- 2. Swedish Polar Research Secretariat (SPRS), Sweden, Magnus Tannerfeldt
- 3. Swedish Maritime Administration (SMA), Sweden, Tomas Årnell
- 4. Swedish Meteorological and Hydrological Institute (SMHI), Sweden, Amund Lindberg
- 5. Institut de Ciències del Mar (CSIC), Spain, Roger Urgeles
- 6. Italian National Research Council (CNR), Italy, Enrico Brugnoli
- 7. Programma Nazionale di Ricerche in Antartide (PNRA) Italy, Carlo-Alberto Ricci
- 8. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Italy, Angelo Camerlenghi
- 9. British Antarctic Survey (BAS), United Kingdom, David G. Vaughan
- 10. European Polar Board (EPB), Roberto Azzolini
- 11. Geological Survey of Denmark and Greenland (GEUS), Denmark, Christian Marcussen
- 12. Finnish Environment Institute, Marine Research Center (SYKE), Finland, Juha Flinkman
- 13. Finnish Meteorological Institute (FMI), Finland, Johanna Ikävalko
- 14. Polish Academy of Sciences (IOPAS), Poland, Waldemar Walczowski
- 15. Arctic Portal.org, Iceland, Halldór Jóhannsson
- 16. Portugese Foundation for Science and Technology, Portugal, Sónia Mendes da Silva

International and non-European organisations:

- 16. National Resources Canada (NRCAN), Canada, Marian Campbell Jarvis
- 17. National Science Foundation (NSF), Division of Polar Programs, USA, Simon Stephenson
- 18. International Arctic Science Committee (IASC), International, Volker Rachold
- 19. Sustaining Arctic Observing Networks (SAON), International, Tom Armstrong
- 20. International Study of Arctic Change (ISAC), International, Maribeth Murray

Towards Horizon 2020

ARICE was positively evaluated by the EC for future Integrating Infrastructure Initiatives (I3) in Horizon 2020.

It received the **highest grade A and recommended** as a "Topic with high potential and with merit for future Horizon 2020 actions for integrating and opening existing national research infrastructures".

This means that a call might be opened in Horizon 2020, which will be a very important step for the implementation of this initiative.

Next steps:

Create scientific, legal and financial framework, drawing on the ERICON documentation and input from all partners

- All partners: promote the vision and secure national political and financial support for its realization
- Apply to be on ESFRI Roadmap
- Respond to relevant EU calls
- Forming transatlantic and other international alliances

Timeline:

2014 – 2015	Securing support on national, European and international level
2015 – 2016	Preparations and agreements between funding agencies and operators
2016 – 2017	Funding applications
2017 – 2018	Call for proposals, scientific evaluation, strategic and operational
	planning
2018 – 2025	Arctic research expeditions with ODEN and POLARSTERN,
	evaluations, repeated calls for proposals

Building the future

Thank you!